SEVENTH APPROXIMATION DATA FORM FOR CONVENTIONAL ASSESSMENT UNITS (Version 6, 9 April 2003)

IDENTIFICATION INFORMATION

Assessment Geologist: S.B. Gaswirth					Date:	31-Aug-10	
egion: North America					Number:	5	
Province:	Anadarko Basin Num					Number:	5058
Total Petroleum System:	Woodford Composite Number:					Number:	505801
Assessment Unit:	Viola Grou	р				Number:	50580103
Based on Data as of:							
Notes from Assessor:		nd coproducts			and Hur	nton AUs	
	Fort Worth	Basin used fo	r calibratio	n			
	CHARA	CTERISTICS	OF ASSES	SSMENT UN	IT		
Oil (<20,000 cfg/bo overall)	<u>or</u> Gas (<u>></u> 20,	,000 cfg/bo ove	erall):	Oil			
What is the minimum accumulation the		itial to be adde		mmboe growr ves)	1		
No. of discovered accumulation Established (>13 accums.)	ons exceedir	ng minimum si: _Frontier (1-13 a		Oil: X Hy		Gas:	
Median size (grown) of disco	vered oil acc	umulations (mı	mbo):				
		1st 3rd		2nd 3rd		3rd 3rd	
Median size (grown) of disco	vered gas ac	•	•			0.10	
		1st 3rd		2nd 3rd		3rd 3rd	
Assessment-Unit Probabilities: Attribute Probability of occurrence (0-1.0) 1. CHARGE: Adequate petroleum charge for an undiscovered accum. ≥ minimum size: 1.0 2. ROCKS: Adequate reservoirs, traps, and seals for an undiscovered accum. ≥ minimum size: 1.0 3. TIMING OF GEOLOGIC EVENTS: Favorable timing for an undiscovered accum. ≥ minimum size: 1.0 Assessment-Unit GEOLOGIC Probability (Product of 1, 2, and 3): 1.0						1.0 1.0 1.0	
No. of Undiscovered Accur	nulations: H	DISCOVERED How many und Incertainty of fix	iscovered	accums. exis		e <u>></u> min. size	e?:
Oil Accumulations:	mi	nimum (>0)	1	mode	2	maximum	10
Gas Accumulations:	mi	nimum (>0) nimum (>0)	1	mode	2	maximum	10
Sizes of Undiscovered Acc		What are the s in the sizes o		•		ums?:	
Oil in Oil Accumulations	(mmbo):	minimum	0.5	median	1	maximum	5
Gas in Gas Accumulation	•	minimum			6	maximum	
2 3.2 3.1 2 3.2 1 10003100	- \ 3 /•						

AVERAGE RATIOS FOR UNDISCOVERED ACCUMS., TO ASSESS COPRODUCTS

(uncertainty of fixed but unknown values)

nxea but unkni	own value	5)		
minimum		mode		maximum
1000		2000		3000
40		80		120
minimum		mode		maximum
3		6		9
			TIONS	
minimum		mode		maximum
30		38		46
0.1		0.2		0.4
minimum 600	F75	mode 1800	F25	maximum 5600
minimum 1 0.1 0		mode 10 0.2 0		maximum 20 3 0.1
minimum 1200	F75	mode 2500	F25	maximum 6000
	minimum 1000 40 minimum 3 FOR UNDISCO ies of undiscove minimum 30 0.1 minimum 600 minimum 1 0.1 0 minimum	minimum 1000 40 minimum 3 FOR UNDISCOVERED ies of undiscovered accuminimum 30 0.1 minimum F75 600 minimum 1 0.1 0 minimum F75	1000 2000 40 80 minimum mode 3 6 FOR UNDISCOVERED ACCUMULATIONS) ies of undiscovered accumulations) minimum mode 30 38 0.1 0.2 minimum F75 mode 10 0.1 0.2 0 minimum mode 1 mode 1 mode mod	minimum mode 1000 2000 40 80 minimum mode 3 6 FOR UNDISCOVERED ACCUMULATIONS ies of undiscovered accumulations) minimum mode 30 38 0.1 0.2 minimum F75 mode 1 0.1 0.1 0.1 0.2 0 minimum mode 1 0.1 0.2 0 minimum F75 mode F25 F25 minimum F75 mode F25 F25 F25 F25 F25 F25 F25 F2

THIS PAGE IS INTENTIONALLY BLANK

ALLOCATIONS OF POTENTIAL ADDITIONS TO RESERVES TO STATES

Surface Allocations (uncertainty of a fixed value)

1. Colorado		_represents_	4.85	area % of the	AU
Oil in Oil Accumulations: Volume % in entity	minimum		mode 2.00	. <u> </u>	maximum
Gas in Gas Accumulations: Volume % in entity			2.00	. <u> </u>	
2. Kansas		_represents_	40.58	area % of the	AU
Oil in Oil Accumulations: Volume % in entity	minimum		mode 40.58	. <u> </u>	maximum
Gas in Gas Accumulations: Volume % in entity			40.58	. <u> </u>	
3. Oklahoma		_represents_	40.91	area % of the	AU
Oil in Oil Accumulations: Volume % in entity	minimum		mode 46.76	. <u> </u>	maximum
Gas in Gas Accumulations: Volume % in entity			46.76	. <u> </u>	
4. Texas		_represents_	13.66	area % of the	AU
Oil in Oil Accumulations: Volume % in entity	minimum		mode 10.66	. <u> </u>	maximum
Gas in Gas Accumulations: Volume % in entity			10.66	. <u>-</u>	
5		_represents_		area % of the	AU
Oil in Oil Accumulations: Volume % in entity	minimum		mode	. <u> </u>	maximum
Gas in Gas Accumulations: Volume % in entity				. <u> </u>	
6		_represents_		area % of the	AU
Oil in Oil Accumulations: Volume % in entity	minimum		mode	. <u> </u>	maximum
Gas in Gas Accumulations: Volume % in entity				. <u> </u>	

7		represents		area % of t	he AU
Oil in Oil Accumulations: Volume % in entity	minimum		mode	<u>-</u>	maximum
Gas in Gas Accumulations: Volume % in entity				_	
8		represents		area % of t	he AU
Oil in Oil Accumulations: Volume % in entity	minimum		mode	-	maximum
Gas in Gas Accumulations: Volume % in entity		· -		_	
9		represents		area % of t	he AU
Oil in Oil Accumulations: Volume % in entity	minimum		mode	-	maximum
Gas in Gas Accumulations: Volume % in entity		. <u>-</u>		-	
10		represents		area % of t	he AU
Oil in Oil Accumulations: Volume % in entity	minimum		mode	_	maximum
Gas in Gas Accumulations: Volume % in entity				_	
11		represents		area % of t	he AU
Oil in Oil Accumulations: Volume % in entity	minimum		mode	_	maximum
Gas in Gas Accumulations: Volume % in entity				_	
12		represents		area % of t	he AU
Oil in Oil Accumulations: Volume % in entity	minimum		mode	_	maximum
Gas in Gas Accumulations: Volume % in entity				-	

ALLOCATIONS OF POTENTIAL ADDITIONS TO RESERVES TO LAND ENTITIES Surface Allocations (uncertainty of a fixed value)

1. Federal Lands		represents_	0.90	area % of the	AU
Oil in Oil Accumulations: Volume % in entity	minimum		mode 0.83	. <u> </u>	maximum
Gas in Gas Accumulations: Volume % in entity			0.83		
2. Private Lands		_represents_	97.97	area % of the	AU
Oil in Oil Accumulations: Volume % in entity	minimum		mode 98.01		maximum
Gas in Gas Accumulations: Volume % in entity			98.01		
3. Tribal Lands		represents_	0.01	area % of the	AU
Oil in Oil Accumulations: Volume % in entity	minimum		mode 0.01		maximum
Gas in Gas Accumulations: Volume % in entity			0.01		
4. Other Lands		represents_		area % of the	AU
Oil in Oil Accumulations:	minimum		mode		maximum
Volume % in entity		-		_	
Gas in Gas Accumulations: Volume % in entity		. <u>-</u> 		- - –	
Gas in Gas Accumulations:		represents	0.16	area % of the	AU
Gas in Gas Accumulations: Volume % in entity	minimum	represents_	0.16 mode 0.07	area % of the	AU
Gas in Gas Accumulations: Volume % in entity 5. CO State Lands Oil in Oil Accumulations:	minimum	represents_	mode	area % of the	
Gas in Gas Accumulations: Volume % in entity 5. CO State Lands Oil in Oil Accumulations: Volume % in entity Gas in Gas Accumulations:	minimum	represents_	mode 0.07	area % of the	maximum
Gas in Gas Accumulations: Volume % in entity 5. CO State Lands Oil in Oil Accumulations: Volume % in entity Gas in Gas Accumulations: Volume % in entity	minimum		mode 0.07	- - –	maximum

7.	OK State Lands		represents	0.87	area % of t	he AU
<u>Oil</u>	in Oil Accumulations: Volume % in entity	minimum		mode 0.99		maximum
<u>Ga</u>	s in Gas Accumulations: Volume % in entity			0.99		
8.	TX State Lands		represents		area % of t	he AU
<u>Oil</u>	in Oil Accumulations: Volume % in entity	minimum		mode 0.01		maximum
<u>Ga</u>	s in Gas Accumulations: Volume % in entity			0.01		
9.			represents_		_area % of t	he AU
<u>Oil</u>	in Oil Accumulations: Volume % in entity	minimum		mode		maximum
<u>Ga</u>	s in Gas Accumulations: Volume % in entity					
10.			_represents_		_area % of t	he AU
<u>Oil</u>	in Oil Accumulations: Volume % in entity	minimum		mode		maximum
<u>Ga</u>	s in Gas Accumulations: Volume % in entity					
11.			_represents_		area % of t	he AU
<u>Oil</u>	in Oil Accumulations: Volume % in entity	minimum		mode		maximum
<u>Ga</u>	s in Gas Accumulations: Volume % in entity					
12.			_represents_		_area % of t	he AU
<u>Oil</u>	in Oil Accumulations: Volume % in entity	minimum		mode		maximum
<u>Ga</u>	s in Gas Accumulations: Volume % in entity					

ALLOCATIONS OF POTENTIAL ADDITIONS TO RESERVES TO FEDERAL LAND SUBDIVISIONS Surface Allocations (uncertainty of a fixed value)

1.	Bureau of Land Management (BLM)		represents	0.00	area % of the	e AU
Oil	in Oil Accumulations: Volume % in entity	minimum		mode 0.00		maximum
<u>Ga</u>	s in Gas Accumulations: Volume % in entity			0.00		
2.	BLM Wilderness Areas (BLMW)		_represents_		area % of the	e AU
<u>Oil</u>	in Oil Accumulations: Volume % in entity	minimum		mode		maximum
<u>Ga</u>	s in Gas Accumulations: Volume % in entity					
3.	BLM Roadless Areas (BLMR)		_represents_		area % of the	e AU
Oil	in Oil Accumulations: Volume % in entity	minimum		mode		maximum
<u>Ga</u>	s in Gas Accumulations: Volume % in entity					
4.	National Park Service (NPS)		represents_	0.03	area % of the	e AU
<u>Oil</u>	in Oil Accumulations: Volume % in entity	minimum		mode 0.02		maximum
Gas	s in Gas Accumulations: Volume % in entity			0.02		
5.	NPS Wilderness Areas (NPSW)		_represents_		area % of the	e AU
<u>Oil</u>	in Oil Accumulations: Volume % in entity	minimum		mode		maximum
<u>Ga</u>	s in Gas Accumulations: Volume % in entity					
6.	NPS Protected Withdrawals (NPSP)		_represents_		area % of the	e AU
Oil	in Oil Accumulations: Volume % in entity	minimum		mode		maximum
Gas	s in Gas Accumulations: Volume % in entity					

7. US Forest Service (FS)		_represents_	0.55	area % of the	AU
Oil in Oil Accumulations: Volume % in entity	minimum		mode 0.47		maximum
Gas in Gas Accumulations: Volume % in entity			0.47		
8. USFS Wilderness Areas (FSW)		_represents_		area % of the	AU
Oil in Oil Accumulations: Volume % in entity	minimum		mode		maximum
Gas in Gas Accumulations: Volume % in entity					
9. USFS Roadless Areas (FSR)		_represents_		area % of the	AU
Oil in Oil Accumulations: Volume % in entity	minimum		mode		maximum
Gas in Gas Accumulations: Volume % in entity					
10. USFS Protected Withdrawals (FSP)		_represents_		area % of the	AU
Oil in Oil Accumulations: Volume % in entity	minimum		mode		maximum
Gas in Gas Accumulations: Volume % in entity					
11. US Fish and Wildlife Service (FWS)		_represents_	0.06	area % of the	AU
Oil in Oil Accumulations: Volume % in entity	minimum		mode 0.07		maximum
Gas in Gas Accumulations: Volume % in entity			0.07		
12. USFWS Wilderness Areas (FWSW)		_represents_		area % of the	AU
Oil in Oil Accumulations: Volume % in entity	minimum		mode		maximum
Gas in Gas Accumulations: Volume % in entity					

13. USFWS Protected Withdrawals (FWSP)		_represents_		area % of the	. AU
Oil in Oil Accumulations: Volume % in entity	minimum		mode		maximum
Gas in Gas Accumulations: Volume % in entity					
14. Wilderness Study Areas (WS)		_represents_		area % of the	: AU
Oil in Oil Accumulations: Volume % in entity	minimum		mode		maximum
Gas in Gas Accumulations: Volume % in entity					
15. Department of Energy (DOE)		_represents_		area % of the	. AU
Oil in Oil Accumulations: Volume % in entity	minimum		mode		maximum
Gas in Gas Accumulations: Volume % in entity					
16. Department of Defense (DOD)		_represents_	0.15	area % of the	. AU
Oil in Oil Accumulations: Volume % in entity	minimum		mode 0.17		maximum
Gas in Gas Accumulations: Volume % in entity			0.17		
17. Bureau of Reclamation (BOR)		_represents_	0.07	area % of the	: AU
Oil in Oil Accumulations: Volume % in entity	minimum		mode 0.08		maximum
Gas in Gas Accumulations: Volume % in entity			0.08		
18. Tennessee Valley Authority (TVA)		_represents_		area % of the	. AU
Oil in Oil Accumulations: Volume % in entity	minimum		mode		maximum
Gas in Gas Accumulations: Volume % in entity					

19. Other Federal		represents	0.03	area % of th	ne AU
Oil in Oil Accumulations: Volume % in entity	minimum	- ,	mode 0.03		maximum
Gas in Gas Accumulations: Volume % in entity			0.03		
20		represents		_area % of th	ne AU
Oil in Oil Accumulations: Volume % in entity	minimum		mode		maximum
Gas in Gas Accumulations: Volume % in entity					

ALLOCATIONS OF POTENTIAL ADDITIONS TO RESERVES TO ECOSYSTEMS Surface Allocations (uncertainty of a fixed value)

1.	Arkansas Tablelands (ARTL)		_represents_	3.09	area % of the	e AU
<u>Oil</u>	in Oil Accumulations: Volume % in entity	minimum		mode 1.28		maximum
<u>Ga</u>	s in Gas Accumulations: Volume % in entity			1.28		
2.	Central High Plains (CNHP)		_represents_	0.07	_area % of the	e AU
<u>Oil</u>	in Oil Accumulations: Volume % in entity	minimum		mode 0.03		maximum
Ga	s in Gas Accumulations: Volume % in entity			0.03		
3.	Central High Tablelands (CNHT)		_represents_	9.60	area % of the	e AU
<u>Oil</u>	in Oil Accumulations: Volume % in entity	minimum		mode 9.59		maximum
<u>Ga</u>	s in Gas Accumulations: Volume % in entity			9.59		
4.	Cross Timbers and Prairie (CRTP)		_represents_	0.10	area % of the	e AU
<u>Oil</u>	in Oil Accumulations: Volume % in entity	minimum	- -	mode 0.11		maximum
<u>Ga</u>	s in Gas Accumulations: Volume % in entity			0.11		
5.	Redbed Plains (RBPL)		_represents_	17.19	area % of the	e AU
<u>Oil</u>	in Oil Accumulations: Volume % in entity	minimum		mode 19.60		maximum
<u>Ga</u>	s in Gas Accumulations: Volume % in entity			19.60		
6.	South-Central Great Plains (SCGP)		_represents_	29.80	_area % of the	e AU
<u>Oil</u>	in Oil Accumulations: Volume % in entity	minimum		mode 31.52		maximum
<u>Ga</u>	s in Gas Accumulations: Volume % in entity			31.52		

7.	Southern High Plains (SHPL)		represents	27.87	area % of t	he AU
<u>Oil</u>	in Oil Accumulations: Volume % in entity	minimum		mode 27.63		maximum
<u>Ga</u>	s in Gas Accumulations: Volume % in entity			27.63		
8.	Texas High Plains (TXHP)		represents_		area % of t	he AU
<u>Oil</u>	in Oil Accumulations: Volume % in entity	minimum		mode 10.24		maximum
<u>Ga</u>	s in Gas Accumulations: Volume % in entity			10.24		
9.			_represents_		area % of t	he AU
<u>Oil</u>	in Oil Accumulations: Volume % in entity	minimum		mode		maximum
<u>Ga</u>	s in Gas Accumulations: Volume % in entity					
10.			represents		area % of t	he AU
<u>Oil</u>	in Oil Accumulations: Volume % in entity	minimum		mode		maximum
<u>Ga</u>	s in Gas Accumulations: Volume % in entity					
11.			represents		area % of t	he AU
<u>Oil</u>	in Oil Accumulations: Volume % in entity	minimum		mode		maximum
<u>Ga</u>	s in Gas Accumulations: Volume % in entity					
12.			_represents_		area % of t	he AU
<u>Oil</u>	in Oil Accumulations: Volume % in entity	minimum		mode		maximum
<u>Ga</u>	s in Gas Accumulations: Volume % in entity					